Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Multi‐copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio‐electrochemical applications. This study employs time‐dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three‐coordinate models and 1 four‐coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination. Calculations using ωB97X‐D3 functional, def2‐TZVP basis set, and conductor‐like polarizable continuum model (CPCM) solvation model reproduced key experimental spectral features, with increased model complexity improving agreement, particularly for the ~400 cm−1band splitting in resonance Raman spectra. This work enhances our understanding of T1 copper sites' electronic properties and spectra, bridging the gap between simplified models and complex proteins. The findings contribute to the interpretation of spectroscopic data in blue copper proteins and may inform future studies on similar biological systems.more » « lessFree, publicly-accessible full text available January 5, 2026
-
Abstract Time‐dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+). An organic dication, MV2+has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+is easily reduced by a single electron transfer to form a radical cation species (MV•+), which has an intense UV–visible absorption near 600 nm. The redox properties of the MV2+/MV•+couple and light‐sensitivity of MV•+have made the system appealing for photo‐electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo‐induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+and MV•+. Using a conventional hybrid exchange functional (B3‐LYP) and a long‐range corrected hybrid exchange functional (ωB97X‐D3), including with a conductor‐like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions.more » « less
An official website of the United States government
